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Abstract. In this paper we have considered the problem ii the
structure of a strong collision free wave in a plasma perpendi-
cular to its magnetic field. It is shown that conditions on
the two sides of the wave are the same and are separated by a
solitary pulse provided the kinetic energy of the motion at one
end of the wave (x = -», say) is less than the sum of magnetic
and thermal energy of the plasma. If the kinetic energy is more
than the sum of magnetic and thermal energy, no wave exists and
the constant solution at x = -» is the only solution of the

equations describing the wave form. '




I. Introduction.

The subject of the structure of a strong collision free wave, in a
Plasma perpendicular to the magnetic field has been treated by Adlam and Ala.nl,
13urgers2 and Hairn List and Schlliter’. Hein, List and Schlfiter in particular

have obtained solutions of the wave structure by solving the non-linear
equations on a computer.

In this paper we have investigated mathematical properties of the egua-
tions which help us to guess the correct solution out of the many solutions
obtained on a camputer. As an illustrative example we shall consider a
Plasma with isotwopic pressure. The generalization to the anisotropic case
is quite straight forward. Burgers has made an extensive study of the wave
structure when the plasma pressure is anisotropic and he arrives at the same
general result that there is no change of state on the two sides of the wave
i.e., that no shock wave exists in & collisionless plasma perpendicular to
the magnetic field.

The result of our paper is that a solitary wave only exists if the
kinetic energy of motipn, which produces the wave, is less than the sum of
magnetic and thermal energy of the plasma; that no stationary wave exists if
the kinetic energy of motion is more than the sum of msgnetic and thermal
energy of the plasma. In the latter case the constant solution at one end of the
wave is the only solution of the differential equation (section &).

2. Equations Describing the Wave Form.

Consider a stream of plasma at X = -® with a constant velocity vy, along

x-axis and a constant magnetic field By along z-axis. The electrons and

ions of the plasma will drift in the y-direction because of the magnetic

field.




Our object is to obtain conditions at x = +® and the form of the wave
or waves which start from the given solution at x = -®. As a simplifica-
tion we assume that the electrons and ions satisfy Maxwellian distribution
function with variable number density, velocity components and the tempera-

ture. Therefore, if f,, fj denote the electron and ion distribution

functions
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In cartesian coordinates, assuming steady state, the Boltzmann equa-

tion can be written as
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and similar equations for tne ions. Let us call the similar ion

equations as (5)' - (%)'. Maxw-ll's equations yield
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To further simplify the problem, we will make the assumption that
the space charge can be neglected. The characteristic length

of space charge oscillations is of the order of the Debye lengthl‘

R-D (41me —
hydrodynamic oscillations is of the order of c/aJP:C /l}_n Ne:. .

Thus assuming that the electron thermal velocity is well below the

) while, as we .shall see in this paper, that of magneto-

velocity of light, the space charge oscillations are of much lower
scale than the oscillations we are interested in. With the as-
sumption Ex v 0 and ", = Y.L =M (to a good approximation
we then have Wy = U = w say), equation (6), (6)' and

(8), (8)" yield, respectively
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Equation (5) now gives

nu= Mu, (15)

where Limit n(x) = n; and Limit u(x) = uj.
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we finally obtain the equations
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where

o = |+ 26+ p',z (21)

Eguations (19), (20) satisfy the boundary conditions H = /5, U= tat j“""o

3. A Mathematical Discussion of Equations (19), (20)

The pair (U, H) = (1, W‘J.) is a constant solution of these
equations. We shall study other constant solutions represented
by (19), (20), but we first examine the stability of the solutions
of (19), (20) in the neighborhood of (1, /Bl) and determine the
nature of this critical point.

et U= 1+U,

H = U F( H,;U;) - (22)

H = Pl+' H . We then obtain from (19)

where
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Equations (20), (24) yield,

gi + Y.(U.)%;'—z + KU+ Bll) =0 (1)

.. _ _ 2
where ‘D’. 5 Y,_ are analytic in U, near Ul = 0, ‘p;(Ul) = O(Ul ) and

K =1+-L - & 2p- b6, (28)
by |"69|

To determine the nsture of the point U = 1, we linearize equa-
tions (23), (27). The linearized form of equation (27) is
oy, _
Ay>
In all the discussion that follows we shall assume the flow
velocity to be much higher than the thermal velocity of particles

constituting the plasma, so that 69141 or 1 = 69170. The sign
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of kl is therefore determined by the expression 1 - 2 }12 - 661-
In case I when 1l -2 /B.L2 - 68,0, Kt is positive and therefore
U = 1 is a center in both (27) and (29) according to a known result
of Lyapounov, see Malkin5, pp 123-4, (as no odd powers of dUl/dy oceur) .
In case II when 1 - 2/312 - 6el< O,kl is negative; the point U = 1
is a saddle point in both equations (27) and (29).

Let us now consider all the constant solutions represented
by the equations (19), (20). According to equation (20) constant

solutions satisfy the equation HU = ;&. This condition, together

with equation (19) then gives the equation

4 3 2 =
7(60) = U -U (a-:-16.+[33)+ FJU +28, =0 (30)
£(U) may also be written as

fo) = (v-1) [U3= (F+28)(0% V) ~ 20,] (51)
= (U-1) n{ U)

From Descarte's rule of signs h(U) cannot have more than one

positive root. Also it is easy to see that it has a positive root.
Let this positive root be denoted by Up. Since £(0)0, Uo will be
less than or greater than § when £'(1)_» 0, £'(1)<& O respectively. We

therefore again have two c2sss:
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(I) £'(1) =1-2 /312 - 60,50
and

(I1) 1 -2 /3_L2 - 68, 0.

As we require that 6el< l, Case I may occur. Figure 1 shows
a rouch sketch of £(U) versus U for cases I and II above.

To find the nafure of the other critical point U = Up, we
write equation (20) as

&V du ‘[ Vg(W+ ;’C(DJ+ vgw-F

dy> ( ) U g’V v 9V

where
He 200 = [a- U- 25

g'(U) has a zero at U* =(6Bl)1/u. It is interesting to note that

this singularity of the differential equation can be quite close to 1.

For example, for 6, = .1, (661)1/)+ ~ .880117. Higher values of ©

1
can bring this singularity still closer to U = 1.
When equation (32) is linearized about the zero Up of £(U),

we obtain the equation

U} "‘L(U°> U, =0

(32)

(33)

(34)
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where U = Uo+U, snd UL (U) =1 + = 2P . The nature of

U (69a— 09
the point Up = 1 has already been discussed. Now let us assume
in addition to 60, { 1, that Uo* > 6. We wish to establish
for equation (32) that in case I when the point U e 1 is a center
the other equilibrium point Up £ 1 is a saddle point and conversely,
in case II when U = 1 is a saddle point, the other equilibrium point
Uo >»l is a center. By arguments similar to those given above for
equation (27) and (29), this is equivalent to showing that if
h(Up) = 0, h given in (31), then Uo 1l implies L(Uo) {OeandUo 1
implies L(Uo) > O.

It can be shown that

~ £CU)
U ‘[ B + U?(U)] (35)

U g.(14> - =

Néw, consider case I. f£(U) has a zero at U = Up (( 1) and U = 1.
In the U,U plane construct a closed loop C enclosing Up and 1 and
lying so close to the U-axis that the sign of U is determined by
the last term on the left in (32). (see Figure 2). Then using
(35) and upon considering the changes in the sign of £(U), it
follows that the index of C with respect to (32) is 06. As the
index of a center (U = 1) is 1, this implies that the index of Up
is -1. If L(Uo) # 0, i.e., if Uo is an elementary critical point,
then Uo of necessity must be a saddle point and L(Uo) 4.0 will hold.

A similar arrangement for Up>1 in case II shows that the index of Up

is 1 and therefore L(Uo) > O holds (provided of course L(Uo) # o)
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Thus the problem is reduced to showing that the two poly-
nomials h(U) = U® - bU - bJ - 20, and M(U) = U° = 60, U24 ko, - 2
have nc common positive zeros in either case I or case II. Here
we have used the definition b = 26l+ FJ.Z in deriving the form of
M(U) which is the numerator of UL(U).

This has not been shown in general, although for particular
choices of /3, ) 91, it is relatively straightforward. The critical
case, however, is when b + el = % or 2 53.1.2'?661 = 1, for then the
two roots Ug and 1 become equal and, of course, in this case M(1) = 0.

Iet us suppose that b+ el is close to %, i.e., Up is close to 1

so that (Uo - 1)2, (Uo - 1)° are negligible in comparison with Uo - 1.

Now let R = U® and expand h and M gbout U =1 and R = 1. This gives

200) = | — 26 +8) + 30 -£) (V=D +@_b)(u-;)l+(u—a (36)

2 -~ 3 3
M(R) = 1—2(frs8) £ 3(-26) (RD+2(R-D ¥ (R-D° G

The zeros Up, Ro (=I—I'2 - 1) of h and M may be approximated by

z(ﬂ*fB&)- |
30— 4) (33)

Ro = i+ 2(6+0)

B e,

30_299

Vo

(I

I
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Now suppose we are in case I, that is b+el<% . Then as b>2el,
we have Up - L{Ro - 1 = U # - 1¢0; where M(T) = 0, U >0. This
implies

-V v = 0)C+0) 7 (1=-0)

Therefore

Uy < U ¢ |

In case II, b *617%’ it follows similarly from Up - 1U2 - 1,
that l{ﬁ <Ua' Thus the positive roots of M and R, which coincide

for b{-el = %, do separate as required, for b 1-91 near 32'- Although

a proof for the general case is lacking, the following calculations

may be of some interest.

/4

Teking 6, = .1, b = .3, we find (6el) = .880117, Uo ==.88978

1
and M(Up) = - .1788 £ 0. With 6, = -1, b = .5, we find Uo =2 1.1116
and M(Ug) T .54567 3 O. Thus we observe that at b = .3, Ug is very
close to U¥ = (661)1/l+ and so b could not be decreased further and
. 4
still have Up 7 691.
Thus we have seen that in case II, that is Up 21, if M(Ug) 7 O,

then Up is & center. In this case the phase plane portrait of the

solution is shown in figure 3. In the other case, in which Up is a
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saddle point and 1 a cernter, the phase plance picture is the same as
figure 35 with the role of L, Up reversed. As is clear from our
analysis we have tried to determine the structure of the solutions
of equations (19), (20) from the properties of the differential
equations (27) or (32). In the next section, we shall verify our

predictions by-obtaining some solutions on a computer.

L. Computer Calculations

Some of the results given in the previous section were veri-
fied by computing the solution of equations (19), (20) on an IBM
TO9%4. The way to do this is to choose values of U, H (different
from 1, ﬁi) lying on the eigen solution by using'the linear equation
(29). All calculations were started close to U =1, H = f%: Since
the solution depends critically on the position of the point of
start in the phase plane we ran several cases using values slightly
different from those obtained from the linear equation (29). For

example, for /? = .81, 6, = .05, we obtained the solution using (a)U=1.0001,

1

%}q = .00001 and (b)U=1.0001, g—;’- = .001 while frum the linear equation
we obtain a wue of S which lies between .00001, .001. Figures I and b

ay
give the solution for the casea (a), (b) above. In the case (b)

the solution becomes unstable because we happen to use a value of %g
which lies outside the oval of figure 3. In the case (a), we obtain

a solution which almost returns back to its initial value and re-

peats itself. (The repetitions are evidently the cause of the computa-
tional error, which if decreased will show that the solution is a

solitary pulse. 8Since only two branches of the curve approach
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U =1, U = 0 the solitary pulse is the required solution of the
wave form.)

We now turn to a calculation of case I considered in section 3.

We used /2 = .1, o, =.1. Teking a point away from U = 1, & - o,
we obtained a solution consisting of oscillations having U = 1
%g = O for its center in accord with the fact that U = 1, %g =0

is a center. We see therefors that in case (I) even the solitary wave
does not exist.

We have not made any computaitions about the point U = Uo as this
point is of no interest to us.

This corresponds to a solution lying just within the qval pictured
in figure 3. A more accuraie choice of initial conditions would show
that the boundary of this oval corresponds to a solitary pulse, that
is, the solution forming the boundary of the oval leaves U = 1, ﬁ =0

at y = - o9, and returns to this point at y = 4+ co.
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Figure Captions

Fig. 1. f£() vs U for Cases I, II of text.

Fig. 2. The closed curve C enclosing the points U = U,end U=1
and lying close to the ¥ axis.

Fig. 3. Approximate phase plane picture of the solution for the
case IT when {J = 1 is a saddle point and (J =Uo 1s a

center.
Fig. La. Computed solution of equations (19), (20) for B, =.81,
8, = .05 using perturbed values |J= 1.0001, dU _ 00001
@ — - L]

Fig. 4b. Computed solution of equations (19), (20) for B, =.E.,
6, = .05, using perturbed values ]} = 1.0001, aU _ 001
3y = 901



x84 jo || /| @spo 40y N sA (N)} °| *Bid

ro>lgo- gzt Il o< lg9-1g z-L |
(o)

(n)3




*SIXD () 8y} 0} aso[d Buik| pup | =N pup °N =N
sjutod ayj Buisojoua o) aAIND paso|d ay] °g °bi4




*a14usd b 8] °n = N pup jujod
9|PpPOS D §| | = M) UayMm || aspd ay4 Joj uoyynjos
9y} jo ainyojd aup|d asoyy ajpwixoiddy ‘¢ °Bi4




L

i

£l

r Al

01

oy ‘614

A
R e A A S S S o e e s
-46°
.
. IN-
H
i 4.
H n
L | A
.




9
1. 1 | | | |
0 5 10 15 20 25 30
y

Fig. 4b



